Kubeflow Training Courses

Kubeflow Training Courses

Online o in loco, i corsi di formazione Kubeflow dal vivo con istruttore dimostrano attraverso esercitazioni pratiche interattive come utilizzare Kubeflow per creare, distribuire e gestire flussi di lavoro di machine learning su Kubernetes.

La formazione Kubeflow è disponibile come "formazione live online" o "formazione dal vivo in loco". La formazione live online (nota anche come "formazione live remota") viene effettuata tramite un desktop interattivo, remote. La formazione dal vivo in loco può essere effettuata localmente presso la sede del cliente in Italia o nei centri di formazione aziendale NobleProg in Italia.

NobleProg -- Il tuo fornitore di formazione locale

Machine Translated

Schema generale del corso Kubeflow

Nome del corso
Durata
Overview
Nome del corso
Durata
Overview
35 hours
Kubeflow è un toolkit per rendere Machine Learning (ML) su Kubernetes facile, portabile e scalabile. AWS EKS (Elastic Kubernetes Service) è un servizio gestito da Amazon per eseguire il Kubernetes su AWS. Questo istruttore guidato, la formazione in diretta (online o on-site) è rivolto a sviluppatori e scienziati dei dati che vogliono costruire, implementare e gestire i flussi di lavoro di apprendimento automatico Kubernetes. Al termine di questo corso, i partecipanti saranno in grado di:
    Installare e configurare Kubeflow su premise e nel cloud utilizzando AWS EKS (Elastic Kubernetes Service). Costruire, implementare e gestire i flussi di lavoro ML basati su Docker contenitori e Kubernetes. Eseguire tutti i tubi di apprendimento automatico su varie architettura e ambienti cloud. Utilizzare Kubeflow per spazzolare e gestire i notebook di Jupyter. Costruisci la formazione ML, il tuning di iperparametri e il servizio di carico di lavoro su più piattaforme.
Il formato del corso
    Interattiva lezione e discussione. Molti esercizi e pratiche. Implementazione a mano in un ambiente live-lab.
Opzioni di personalizzazione del corso
    Per richiedere una formazione personalizzata per questo corso, si prega di contattarci per organizzare.
28 hours
Kubeflow è un quadro per eseguire Machine Learning carico di lavoro su Kubernetes. TensorFlow è una biblioteca di apprendimento automatico e Kubernetes è una piattaforma di orchestrazione per la gestione di applicazioni containerizzate. Questo allenamento diretto da istruttori, in diretta (online o on-site) è rivolto agli ingegneri che vogliono impostare Machine Learning carico di lavoro su un server AWS EC2. Al termine di questo corso, i partecipanti saranno in grado di:
    Installare e configurare Kubernetes, Kubeflow e altri software necessari su AWS. Utilizzare EKS (Elastic Kubernetes Service) per semplificare il lavoro di inizializzazione di un cluster Kubernetes su AWS. Creare e implementare un Kubernetes pipeline per l'automazione e la gestione dei modelli ML in produzione. Eseguire e implementare i modelli ML TensorFlow su più GPUs e le macchine che funzionano in parallelo. Leverage altri servizi gestiti da AWS per estendere un'applicazione ML.
Il formato del corso
    Interattiva lezione e discussione. Molti esercizi e pratiche. Implementazione a mano in un ambiente live-lab.
Opzioni di personalizzazione del corso
    Per richiedere una formazione personalizzata per questo corso, si prega di contattarci per organizzare.
28 hours
Kubeflow è un quadro per eseguire Machine Learning carico di lavoro su Kubernetes. TensorFlow è una delle biblioteche di apprendimento automatico più popolari. Kubernetes è una piattaforma di orchestrazione per la gestione di applicazioni containerizzate. Questo allenamento guidato da istruttori, dal vivo (online o on-site) è rivolto agli ingegneri che vogliono disporre Machine Learning carico di lavoro in Azure cloud. Al termine di questo corso, i partecipanti saranno in grado di:
    Installare e configurare Kubernetes, Kubeflow e altri software necessari su Azure. Utilizzare Azure Kubernetes Servizio (AKS) per semplificare il lavoro di inizializzazione di un Kubernetes cluster su Azure. Creare e implementare un Kubernetes pipeline per l'automazione e la gestione dei modelli ML in produzione. Eseguire e implementare i modelli ML TensorFlow su più GPUs e le macchine che funzionano in parallelo. Leverage altri servizi gestiti da AWS per estendere un'applicazione ML.
Il formato del corso
    Interattiva lezione e discussione. Molti esercizi e pratiche. Implementazione a mano in un ambiente live-lab.
Opzioni di personalizzazione del corso
    Per richiedere una formazione personalizzata per questo corso, si prega di contattarci per organizzare.
28 hours
Kubeflow è un quadro per eseguire Machine Learning carico di lavoro su Kubernetes. TensorFlow è una delle biblioteche di apprendimento automatico più popolari. Kubernetes è una piattaforma di orchestrazione per la gestione di applicazioni containerizzate. Questo allenamento diretto da istruttori, in diretta (online o on-site) è rivolto agli ingegneri che desiderano disporre Machine Learning carico di lavoro su Google Cloud Platform (GCP). Al termine di questo corso, i partecipanti saranno in grado di:
    Installare e configurare Kubernetes, Kubeflow e altri software necessari su GCP e GKE. Utilizzare GKE (Kubernetes Kubernetes Motore) per semplificare il lavoro di inizializzazione di un Kubernetes cluster su GCP. Creare e implementare un Kubernetes pipeline per l'automazione e la gestione dei modelli ML in produzione. Eseguire e sfruttare i modelli ML TensorFlow su più GPUs e le macchine che funzionano in parallelo. Fornire altri servizi GCP per estendere un'applicazione ML.
Il formato del corso
    Interattiva lezione e discussione. Molti esercizi e pratiche. Implementazione a mano in un ambiente live-lab.
Opzioni di personalizzazione del corso
    Per richiedere una formazione personalizzata per questo corso, si prega di contattarci per organizzare.
28 hours
Kubeflow è un quadro per eseguire Machine Learning carico di lavoro su Kubernetes. TensorFlow è una delle biblioteche di apprendimento automatico più popolari. Kubernetes è una piattaforma di orchestrazione per la gestione di applicazioni containerizzate. Questo allenamento diretto da istruttori, in diretta (online o on-site) è rivolto agli ingegneri che desiderano disporre Machine Learning carico di lavoro per IBM Cloud Kubernetes Service (IKS). Al termine di questo corso, i partecipanti saranno in grado di:
    Installare e configurare Kubernetes, Kubeflow e altri software necessari sul Servizio IBM Cloud Kubernetes (IKS). Utilizzare IKS per semplificare il lavoro di inizializzazione di un Kubernetes cluster su IBM Cloud. Creare e implementare un Kubernetes pipeline per l'automazione e la gestione dei modelli ML in produzione. Eseguire e implementare i modelli ML TensorFlow su più GPUs e le macchine che funzionano in parallelo. Leverage altri servizi IBM Cloud per estendere un'applicazione ML.
Il formato del corso
    Interattiva lezione e discussione. Molti esercizi e pratiche. Implementazione a mano in un ambiente live-lab.
Opzioni di personalizzazione del corso
    Per richiedere una formazione personalizzata per questo corso, si prega di contattarci per organizzare.
28 hours
Kubeflow è un quadro per eseguire Machine Learning carico di lavoro su Kubernetes. TensorFlow è una delle biblioteche di apprendimento automatico più popolari. Kubernetes è una piattaforma di orchestrazione per la gestione di applicazioni containerizzate. OpenShift è una piattaforma di sviluppo di applicazioni cloud che utilizza Docker contenitori, orchestrati e gestiti da Kubernetes, sulla base di Red Hat Enterprise Linux. Questo allenamento diretto da istruttori, in diretta (online o on-site) è rivolto agli ingegneri che vogliono disporre Machine Learning carico di lavoro in un OpenShift on-premise o cloud ibrido.
    Al termine di questo corso, i partecipanti saranno in grado di: Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Kubeflow e Utilizzare OpenShift per semplificare il lavoro di inizializzazione di un Kubernetes cluster. Creare e implementare un Kubernetes pipeline per l'automazione e la gestione dei modelli ML in produzione. Imparare e implementare TensorFlow modelli ML su più GPUs e macchine che funzionano in parallelo. Chiamare i servizi cloud pubblici (ad esempio i servizi AWS) dall'interno OpenShift per estendere un'applicazione ML.
Il formato del corso
    Interattiva lezione e discussione. Molti esercizi e pratiche. Implementazione a mano in un ambiente live-lab.
Opzioni di personalizzazione del corso
    Per richiedere una formazione personalizzata per questo corso, si prega di contattarci per organizzare.
28 hours
Kubeflow è un toolkit per rendere Machine Learning (ML) su Kubernetes facile, portabile e scalabile. Questo istruttore guidato, la formazione in diretta (online o on-site) è rivolto a sviluppatori e scienziati dei dati che vogliono costruire, implementare e gestire i flussi di lavoro di apprendimento automatico Kubernetes. Al termine di questo corso, i partecipanti saranno in grado di:
    Installare e configurare Kubeflow su premisa e nel cloud. Costruire, implementare e gestire i flussi di lavoro ML basati su Docker contenitori e Kubernetes. Eseguire tutti i tubi di apprendimento automatico su varie architettura e ambienti cloud. Utilizzare Kubeflow per spazzolare e gestire i notebook di Jupyter. Costruisci la formazione ML, il tuning di iperparametri e il servizio di carico di lavoro su più piattaforme.
Il formato del corso
    Interattiva lezione e discussione. Molti esercizi e pratiche. Implementazione a mano in un ambiente live-lab.
Opzioni di personalizzazione del corso
    Per richiedere una formazione personalizzata per questo corso, si prega di contattarci per organizzare. Per saperne di più Kubeflow, si prega di visitare: https://github.com/kubeflow/kubeflow

Last Updated:

Fine settimana Kubeflow corsi, Sera Kubeflow training, Kubeflow centro di addestramento, Kubeflow con istruttore, Fine settimana Kubeflow training, Sera Kubeflow corsi, Kubeflow coaching, Kubeflow istruttore, Kubeflow trainer, Kubeflow corsi di formazione, Kubeflow classi, Kubeflow in loco, Kubeflow corsi privati, Kubeflow training individuale

Corsi scontati

No course discounts for now.

Newsletter per ricevere sconti sui corsi

Rispettiamo la privacy di ogni indirizzo mail. Non diffonderemo,né venderemo assolutamente nessun indirizzo mail a terzi. Inserire prego il proprio indirizzo mail. E' possibile sempre cambiare le impostazioni o cancellarsi completamente.

I nostri clienti

is growing fast!

We are looking for a good mixture of IT and soft skills in Italy!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions