TensorFlow Training Courses

TensorFlow Training Courses

I corsi di formazione TensorFlow dal vivo, istruttori e interattivi dimostrano attraverso discussioni interattive e esercitazioni pratiche su come utilizzare il sistema TensorFlow per facilitare la ricerca nell´apprendimento automatico e per rendere facile e veloce il passaggio dal prototipo di ricerca al sistema di produzione. La formazione TensorFlow è disponibile come formazione dal vivo in loco o formazione dal vivo a distanza. La formazione on-site in loco può essere svolta localmente presso la sede del cliente in Italia o nei centri di formazione aziendale NobleProg in Italia. La formazione in remoto dal vivo viene effettuata tramite un desktop remoto interattivo.

Recensioni

★★★★★
★★★★★

Schema generale del corso TensorFlow

Nome del corso
Durata
Overview
Nome del corso
Durata
Overview
21 hours
Overview
TensorFlow is a 2nd Generation API of Google's open source software library for Deep Learning. The system is designed to facilitate research in machine learning, and to make it quick and easy to transition from research prototype to production system.

Audience

This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects

After completing this course, delegates will:

- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, building graphs and logging
28 hours
Overview
This course explores, with specific examples, the application of Tensor Flow to the purposes of image recognition

Audience

This course is intended for engineers seeking to utilize TensorFlow for the purposes of Image Recognition

After completing this course, delegates will be able to:

- understand TensorFlow’s structure and deployment mechanisms
- carry out installation / production environment / architecture tasks and configuration
- assess code quality, perform debugging, monitoring
- implement advanced production like training models, building graphs and logging
35 hours
Overview
TensorFlow™ is an open source software library for numerical computation using data flow graphs.

SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow.

Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.).

Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input.

Audience

This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs.

After completing this course, delegates will:

- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, embedding terms, building graphs and logging
21 hours
Overview
Audience

This course is suitable for Deep Learning researchers and engineers interested in utilizing available tools (mostly open source) for analyzing computer images

This course provide working examples.
28 hours
Overview
This course will give you knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

This training is more focus on fundamentals, but will help you to choose the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.
7 hours
Overview
La Tensor Processing Unit (TPU) è l'architettura che Google ha utilizzato internamente per diversi anni e che sta diventando disponibile al pubblico Include diverse ottimizzazioni specifiche per l'uso in reti neurali, tra cui la moltiplicazione della matrice ottimizzata e gli interi a 8 bit invece di 16 bit per restituire livelli appropriati di precisione In questo corso di formazione dal vivo, istruito, i partecipanti impareranno come sfruttare le innovazioni nei processori TPU per massimizzare le prestazioni delle proprie applicazioni AI Alla fine della formazione, i partecipanti saranno in grado di: Formare vari tipi di reti neurali su grandi quantità di dati Utilizzare TPU per accelerare il processo di inferenza di un massimo di due ordini di grandezza Utilizza TPU per elaborare applicazioni intensive come la ricerca di immagini, la visione cloud e le foto Pubblico Sviluppatori ricercatori ingegneri Scienziati di dati Formato del corso Lezione di parte, discussione parziale, esercitazioni e pratica intensiva .
14 hours
Overview
Embedding Projector is an open-source web application for visualizing the data used to train machine learning systems. Created by Google, it is part of TensorFlow.

This instructor-led, live training introduces the concepts behind Embedding Projector and walks participants through the setup of a demo project.

By the end of this training, participants will be able to:

- Explore how data is being interpreted by machine learning models
- Navigate through 3D and 2D views of data to understand how a machine learning algorithm interprets it
- Understand the concepts behind Embeddings and their role in representing mathematical vectors for images, words and numerals.
- Explore the properties of a specific embedding to understand the behavior of a model
- Apply Embedding Project to real-world use cases such building a song recommendation system for music lovers

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Overview
In this instructor-led, live training in Italia (online or onsite), participants will learn how to configure and use TensorFlow Serving to deploy and manage ML models in a production environment.

By the end of this training, participants will be able to:

- Train, export and serve various TensorFlow models.
- Test and deploy algorithms using a single architecture and set of APIs.
- Extend TensorFlow Serving to serve other types of models beyond TensorFlow models.
35 hours
Overview
This course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy.

Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow.

Audience

This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects

After completing this course, delegates will:

-

have a good understanding on deep neural networks(DNN), CNN and RNN

-

understand TensorFlow’s structure and deployment mechanisms

-

be able to carry out installation / production environment / architecture tasks and configuration

-

be able to assess code quality, perform debugging, monitoring

-

be able to implement advanced production like training models, building graphs and logging
28 hours
Overview
In this instructor-led, live training in Italia, participants will learn to use Python libraries for NLP as they create an application that processes a set of pictures and generates captions.

By the end of this training, participants will be able to:

- Design and code DL for NLP using Python libraries.
- Create Python code that reads a substantially huge collection of pictures and generates keywords.
- Create Python Code that generates captions from the detected keywords.
28 hours
Overview
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
21 hours
Overview
TensorFlow è una libreria popolare e di apprendimento automatico sviluppata da Go ogle per l'apprendimento profondo, il calcolo numerico e l'apprendimento automatico su larga scala. TensorFlow 2.0, rilasciato a gennaio 2019, è la versione più recente di TensorFlow e include miglioramenti nell'esecuzione desiderata, compatibilità e coerenza API.

Questa formazione dal vivo con istruttore (in loco o remoto) è rivolta a sviluppatori e data scientist che desiderano utilizzare Tensorflow 2.0 per creare predittori, classificatori, modelli generativi, reti neurali e così via.

Al termine di questa formazione, i partecipanti saranno in grado di:

- Installa e configura TensorFlow 2.0.
- Comprendi i vantaggi di TensorFlow 2.0 rispetto alle versioni precedenti.
- Costruire modelli di apprendimento profondo.
- Implementa un classificatore di immagini avanzato.
- Distribuisci un modello di apprendimento profondo su dispositivi cloud, mobili e IoT.

Formato del corso

- Conferenza e discussione interattiva.
- Molti esercizi e pratiche.
- Implementazione pratica in un ambiente live-lab.

Opzioni di personalizzazione del corso

- Per richiedere una formazione personalizzata per questo corso, ti preghiamo di contattarci per organizzare.
- Per ulteriori informazioni su TensorFlow , visitare: https://www.tensorflow.org/
14 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.

By the end of this training, participants will be able to:

- Build and train machine learning models with TensorFlow.js.
- Run existing machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning using custom data.
14 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at data scientists who wish to use TensorFlow to analyze potential fraud data.

By the end of this training, participants will be able to:

- Create a fraud detection model in Python and TensorFlow.
- Build linear regressions and linear regression models to predict fraud.
- Develop an end-to-end AI application for analyzing fraud data.
21 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.

By the end of this training, participants will be able to:

- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.
21 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.

By the end of this training, participants will be able to:

- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand the scope of operations that can be run.
- Deploy a deep learning model on an embedded device running Linux.
21 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.
21 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.

By the end of this training, participants will be able to:

- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.
21 hours
Overview
This instructor-led, live training in (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.

Prossimi corsi TensorFlow

Fine settimana TensorFlow corsi, Sera TensorFlow training, TensorFlow centro di addestramento, TensorFlow con istruttore, Fine settimana TensorFlow training, Sera TensorFlow corsi, TensorFlow coaching, TensorFlow istruttore, TensorFlow trainer, TensorFlow corsi di formazione, TensorFlow classi, TensorFlow in loco, TensorFlow corsi privati, TensorFlow training individuale

Corsi scontati

Newsletter per ricevere sconti sui corsi

Rispettiamo la privacy di ogni indirizzo mail. Non diffonderemo,né venderemo assolutamente nessun indirizzo mail a terzi. Inserire prego il proprio indirizzo mail. E' possibile sempre cambiare le impostazioni o cancellarsi completamente.

I nostri clienti

is growing fast!

We are looking for a good mixture of IT and soft skills in Italy!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions