Corso di formazione Fine-Tuning Defense AI for Autonomous Systems and Surveillance
Fine-tuning is a critical process for adapting AI models to mission-specific defense applications, such as autonomous navigation and real-time surveillance.
This instructor-led, live training (online or onsite) is aimed at advanced-level defense AI engineers and military technology developers who wish to fine-tune deep learning models for use in autonomous vehicles, drones, and surveillance systems while meeting stringent security and reliability standards.
By the end of this training, participants will be able to:
- Fine-tune computer vision and sensor fusion models for surveillance and targeting tasks.
- Adapt autonomous AI systems to changing environments and mission profiles.
- Implement robust validation and fail-safe mechanisms in model pipelines.
- Ensure alignment with defense-specific compliance, safety, and security standards.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Struttura del corso
Overview of AI in Defense Applications
- Autonomous systems, UAVs, and real-time surveillance
- AI use cases in defense: navigation, tracking, reconnaissance
- Overview of AI model adaptation in mission-critical environments
Preparing Data for Fine-Tuning
- Working with sensor data: lidar, radar, thermal, and video feeds
- Labeling strategies for object detection and target recognition
- Data augmentation and anonymization in military contexts
Fine-Tuning AI Models for Perception and Control
- Vision models for real-time object detection and segmentation
- Fusion models for combining multi-sensor inputs
- Policy tuning for autonomous navigation and obstacle avoidance
Security, Safety, and Redundancy in AI Models
- Building resilient models with adversarial defense techniques
- Fail-safe design and anomaly detection during inference
- Securing model pipelines against tampering and spoofing
Testing and Simulation in Defense Environments
- Using synthetic data and digital twins for validation
- Stress testing under adversarial and extreme conditions
- Sim-to-real transfer in operational simulations
Compliance and Defense Standards
- AI assurance frameworks for defense deployments
- Security and ethics in autonomous defense applications
- Documenting compliance with operational and legal mandates
Deployment and Monitoring in the Field
- On-device inference and edge AI optimization
- Telemetry, feedback loops, and continual model updates
- Case studies from real-world defense AI systems
Summary and Next Steps
Requisiti
- An understanding of deep learning and computer vision architectures
- Experience with AI model training and evaluation using frameworks like TensorFlow or PyTorch
- Knowledge of defense-grade system requirements and security protocols
Audience
- Defense AI engineers
- Military tech developers
- Autonomous systems and surveillance platform architects
I corsi di formazione interaziendali richiedono più di 5 partecipanti.
Corso di formazione Fine-Tuning Defense AI for Autonomous Systems and Surveillance - Booking
Corso di formazione Fine-Tuning Defense AI for Autonomous Systems and Surveillance - Enquiry
Fine-Tuning Defense AI for Autonomous Systems and Surveillance - Richiesta di consulenza
Richiesta di consulenza
Corsi in Arrivo
Corsi relativi
Advanced Techniques in Transfer Learning
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti dell'apprendimento automatico di livello avanzato che desiderano padroneggiare tecniche di transfer learning all'avanguardia e applicarle a problemi complessi del mondo reale.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere concetti e metodologie avanzate nell'apprendimento di trasferimento.
- Implementare tecniche di adattamento specifiche del dominio per modelli pre-addestrati.
- Applica l'apprendimento continuo per gestire attività e set di dati in evoluzione.
- Padroneggia la messa a punto multi-task per migliorare le prestazioni del modello in tutte le attività.
Deploying Fine-Tuned Models in Production
21 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello avanzato che desiderano implementare modelli ottimizzati in modo affidabile ed efficiente.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi le sfide legate all'implementazione di modelli ottimizzati nell'ambiente di produzione.
- Containerizza e distribuisci i modelli utilizzando strumenti come Docker e Kubernetes.
- Implementare il monitoraggio e la registrazione per i modelli distribuiti.
- Ottimizza i modelli per la latenza e la scalabilità in scenari reali.
Domain-Specific Fine-Tuning for Finance
21 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello intermedio che desiderano acquisire competenze pratiche nella personalizzazione di modelli di intelligenza artificiale per attività finanziarie critiche.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi i fondamenti dell'ottimizzazione per le applicazioni finanziarie.
- Sfrutta i modelli pre-addestrati per attività specifiche del dominio nel settore finanziario.
- Applica tecniche per il rilevamento delle frodi, la valutazione del rischio e la generazione di consulenza finanziaria.
- Garantisci la conformità alle normative finanziarie come GDPR e SOX.
- Implementa la sicurezza dei dati e le pratiche etiche di intelligenza artificiale nelle applicazioni finanziarie.
Fine-Tuning Models and Large Language Models (LLMs)
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello intermedio e avanzato che desiderano personalizzare modelli pre-addestrati per attività e set di dati specifici.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere i principi del fine-tuning e le sue applicazioni.
- Preparare i set di dati per l'ottimizzazione dei modelli pre-addestrati.
- Ottimizza i modelli linguistici di grandi dimensioni (LLM) per le attività di NLP.
- Ottimizza le prestazioni del modello e affronta le sfide più comuni.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a sviluppatori di livello intermedio e professionisti dell'intelligenza artificiale che desiderano implementare strategie di messa a punto per modelli di grandi dimensioni senza la necessità di ampie risorse computazionali.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere i principi dell'adattamento di basso rango (LoRA).
- Implementa LoRA per una messa a punto efficiente di modelli di grandi dimensioni.
- Ottimizza l'ottimizzazione per ambienti con risorse limitate.
- Valuta e distribuisci modelli ottimizzati per LoRA per applicazioni pratiche.
Fine-Tuning Multimodal Models
28 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello avanzato che desiderano padroneggiare la messa a punto di modelli multimodali per soluzioni di intelligenza artificiale innovative.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi l'architettura dei modelli multimodali come CLIP e Flamingo.
- Prepara e pre-elabora in modo efficace i set di dati multimodali.
- Ottimizza i modelli multimodali per attività specifiche.
- Ottimizza i modelli per le applicazioni e le prestazioni del mondo reale.
Fine-Tuning for Natural Language Processing (NLP)
21 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello intermedio che desiderano migliorare i loro progetti di PNL attraverso l'efficace messa a punto di modelli linguistici pre-addestrati.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi i fondamenti della messa a punto per le attività di NLP.
- Ottimizza i modelli pre-addestrati come GPT, BERT e T5 per applicazioni NLP specifiche.
- Ottimizza gli iperparametri per migliorare le prestazioni del modello.
- Valuta e distribuisci modelli ottimizzati in scenari reali.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 oreQuesto corso di formazione dal vivo e guidato da un istruttore in Italia (online o in loco) è rivolto a ricercatori AI di livello avanzato, ingegneri di machine learning e sviluppatori che desiderano ottimizzare DeepSeek modelli LLM per creare applicazioni AI specializzate su misura per industrie, domini o esigenze aziendali specifiche.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere l'architettura e le capacità dei modelli DeepSeek, inclusi DeepSeek-R1 e DeepSeek-V3.
- Preparare set di dati e preprocessare i dati per l'ottimizzazione.
- Affinare DeepSeek LLM per applicazioni specifiche del settore.
- Ottimizzare e distribuire modelli ottimizzati in modo efficiente.
Fine-Tuning Large Language Models Using QLoRA
14 oreQuesto corso guidato dal formatore in Italia (online o presenza) è rivolto a ingegneri di apprendimento automatico, sviluppatori AI e scienziati dei dati di livello intermedio-avanzato che desiderano imparare come utilizzare QLoRA per addestrare in modo efficiente modelli grandi su specifiche attività e personalizzazioni.
Al termine del corso, i partecipanti saranno in grado di:
- Comprendere la teoria dietro QLoRA e le tecniche di quantizzazione per LLM (Large Language Models).
- Mettere in pratica QLoRA nell'addestramento di modelli linguistici grandi per applicazioni specifiche del settore.
- Ottimizzare le prestazioni dell'addestramento su risorse computazionali limitate utilizzando la quantizzazione.
- Deployare e valutare modelli addestrati in applicazioni reali in modo efficiente.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 oreQuesto corso guidato dall'insegnante in Italia (online o sul posto) è rivolto a ingegneri di apprendimento automatico avanzati e ricercatori di IA che desiderano applicare RLHF per affinare modelli AI grandi per una prestazione, sicurezza e allineamento superiori.
Al termine di questo corso, i partecipanti saranno in grado di:
- Comprendere le basi teoriche dell'RLHF e perché è essenziale nello sviluppo moderno dell'IA.
- Mettere in pratica modelli di reward basati sul feedback umano per guidare i processi di apprendimento per rinforzo.
- Perfezionare grandi modelli linguistici utilizzando tecniche RLHF per allineare le uscite con le preferenze umane.
- Applicare le migliori pratiche per la scalabilità dei flussi di lavoro RLHF per sistemi AI di grado produttivo.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello avanzato che desiderano padroneggiare le tecniche per l'ottimizzazione di modelli di grandi dimensioni per una messa a punto conveniente in scenari del mondo reale.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi le sfide della messa a punto di modelli di grandi dimensioni.
- Applicare tecniche di training distribuite a modelli di grandi dimensioni.
- Sfrutta la quantizzazione e l'eliminazione dei modelli per l'efficienza.
- Ottimizza l'utilizzo dell'hardware per le attività di messa a punto.
- Distribuisci modelli ottimizzati in modo efficace negli ambienti di produzione.
Prompt Engineering and Few-Shot Fine-Tuning
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello intermedio che desiderano sfruttare la potenza dell'ingegneria rapida e dell'apprendimento a pochi colpi per ottimizzare le prestazioni LLM per le applicazioni del mondo reale.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi i principi dell'ingegneria rapida e dell'apprendimento a pochi colpi.
- Progetta prompt efficaci per varie attività di NLP.
- Sfrutta le tecniche a pochi colpi per adattare gli LLM con dati minimi.
- Ottimizza le prestazioni LLM per applicazioni pratiche.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 oreQuesto corso guidato dal formatore in Italia (online o presenza) è rivolto a data scientist e ingegneri AI di livello intermedio che desiderano ottimizzare il fine-tuning dei modelli linguistici grandi in modo più economico ed efficiente utilizzando metodi come LoRA, Adapter Tuning e Prefix Tuning.
Al termine del corso, i partecipanti saranno in grado di:
- Comprendere la teoria sottostante gli approcci al fine-tuning con parametri efficienti.
- Implementare LoRA, Adapter Tuning e Prefix Tuning utilizzando Hugging Face PEFT.
- Confrontare le prestazioni e i compromessi di costo dei metodi PEFT rispetto al fine-tuning completo.
- Distribuire ed scalare modelli LLM fine-tunati con requisiti ridotti di calcolo e archiviazione.
Introduction to Transfer Learning
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti dell'apprendimento automatico di livello principiante e intermedio che desiderano comprendere e applicare tecniche di apprendimento di trasferimento per migliorare l'efficienza e le prestazioni nei progetti di intelligenza artificiale.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere i concetti fondamentali e i vantaggi del transfer learning.
- Esplora i modelli pre-addestrati più diffusi e le relative applicazioni.
- Esegui l'ottimizzazione di modelli pre-addestrati per attività personalizzate.
- Applica il transfer learning per risolvere problemi del mondo reale in PNL e visione artificiale.
Troubleshooting Fine-Tuning Challenges
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello avanzato che desiderano affinare le proprie competenze nella diagnosi e nella risoluzione di problemi di messa a punto per i modelli di apprendimento automatico.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Diagnostica problemi come l'overfitting, l'underfitting e lo squilibrio dei dati.
- Implementare strategie per migliorare la convergenza dei modelli.
- Ottimizza l'ottimizzazione delle pipeline per ottenere prestazioni migliori.
- Esegui il debug dei processi di formazione utilizzando strumenti e tecniche pratiche.