Corso di formazione Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems
Fine-Tuning per i sistemi di Generazione Augmentata con Recupero (RAG) è il processo di ottimizzazione della modalità con cui i modelli linguistici a vasta scala recuperano e generano informazioni rilevanti da fonti esterne per le applicazioni aziendali.
Questo corso guidato dall'insegnante (online o sul posto) è rivolto agli ingegneri NLP di livello intermedio e ai team di gestione del know-how che desiderano affinare i pipeline RAG per migliorare le prestazioni nei casi d'uso della risposta alle domande, della ricerca aziendale e della sintesi.
Al termine di questo corso, i partecipanti saranno in grado di:
- Comprendere l'architettura e il flusso di lavoro dei sistemi RAG.
- Affinare i componenti recupero e generazione per dati specifici del dominio.
- VaLUtARE Le PREstAzIoNe Di RaG E ApPlicArE MiGlIoRAmEnTo TrAMitE tEcNiCo PeFt.
- Distribuire sistemi RAG ottimizzati per l'uso interno o di produzione.
Formato del Corso
- Lecture interattive e discussioni.
- Molte esercitazioni e pratica.
- Implementazione pratica in un ambiente lab live.
Opzioni di Personalizzazione del Corso
- Per richiedere una formazione personalizzata per questo corso, si prega di contattarci per organizzare.
Struttura del corso
Introduzione al Retrieval-Augmented Generation (RAG)
- Cos'è RAG e perché è importante per l'AI aziendale
- Componenti di un sistema RAG: retriever, generator, archivio documentale
- Confronto con LLM autonomi e ricerca vettoriale
Configurazione di una Pipeline RAG
- Installazione e configurazione di Haystack o framework simili
- Ingestione e preprocessamento dei documenti
- Connessione dei retriever ai database vettoriali (ad esempio, FAISS, Pinecone)
Fine-Tuning il Retriever
- Addestramento di retriever densi utilizzando dati specifici del dominio
- Utilizzo dei sentence transformers e dell'apprendimento contrastivo
- Valutazione della qualità del retriever con l'accuratezza top-k
Fine-Tuning il Generator
- Scegliere modelli di base (ad esempio, BART, T5, FLAN-T5)
- Tuning istruzionale vs. tuning supervisionato
- Metodi LoRA e PEFT per aggiorni efficienti
Valutazione ed Ottimizzazione
- Metriche per la valutazione delle prestazioni RAG (ad esempio, BLEU, EM, F1)
- Latenza, qualità della ricerca e riduzione dell'hallucination
- Tracciamento degli esperimenti ed miglioramenti iterativi
Distribuzione e Integrazione nel Mondo Reale
- Distribuzione di RAG nei motori di ricerca interni e negli chatbot
- Considerazioni sulla sicurezza, l'accesso ai dati e la governance
- Integrazione con API, dashboard o portali di conoscenza
Casi di Studio e Migliori Pratiche
- Casi d'uso aziendali nel settore finanziario, sanitario e legale
- Gestione del deriva del dominio ed aggiornamenti della base di conoscenze
- Prospettive future nei sistemi LLM con ritrovamento aumentato
Riepilogo e Passaggi Successivi
Requisiti
- Una comprensione dei concetti di processing del linguaggio naturale (NLP)
- Esperienza con modelli linguistici basati su transformer
- Familiarità con Python e flussi di lavoro di base di apprendimento automatico
Pubblico
- Ingegneri NLP
- Team di gestione del sapere
I corsi di formazione interaziendali richiedono più di 5 partecipanti.
Corso di formazione Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems - Booking
Corso di formazione Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems - Enquiry
Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems - Richiesta di consulenza
Richiesta di consulenza
Corsi in Arrivo
Corsi relativi
Advanced Techniques in Transfer Learning
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti dell'apprendimento automatico di livello avanzato che desiderano padroneggiare tecniche di transfer learning all'avanguardia e applicarle a problemi complessi del mondo reale.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere concetti e metodologie avanzate nell'apprendimento di trasferimento.
- Implementare tecniche di adattamento specifiche del dominio per modelli pre-addestrati.
- Applica l'apprendimento continuo per gestire attività e set di dati in evoluzione.
- Padroneggia la messa a punto multi-task per migliorare le prestazioni del modello in tutte le attività.
Deploying Fine-Tuned Models in Production
21 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello avanzato che desiderano implementare modelli ottimizzati in modo affidabile ed efficiente.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi le sfide legate all'implementazione di modelli ottimizzati nell'ambiente di produzione.
- Containerizza e distribuisci i modelli utilizzando strumenti come Docker e Kubernetes.
- Implementare il monitoraggio e la registrazione per i modelli distribuiti.
- Ottimizza i modelli per la latenza e la scalabilità in scenari reali.
Domain-Specific Fine-Tuning for Finance
21 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello intermedio che desiderano acquisire competenze pratiche nella personalizzazione di modelli di intelligenza artificiale per attività finanziarie critiche.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi i fondamenti dell'ottimizzazione per le applicazioni finanziarie.
- Sfrutta i modelli pre-addestrati per attività specifiche del dominio nel settore finanziario.
- Applica tecniche per il rilevamento delle frodi, la valutazione del rischio e la generazione di consulenza finanziaria.
- Garantisci la conformità alle normative finanziarie come GDPR e SOX.
- Implementa la sicurezza dei dati e le pratiche etiche di intelligenza artificiale nelle applicazioni finanziarie.
Fine-Tuning Models and Large Language Models (LLMs)
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello intermedio e avanzato che desiderano personalizzare modelli pre-addestrati per attività e set di dati specifici.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere i principi del fine-tuning e le sue applicazioni.
- Preparare i set di dati per l'ottimizzazione dei modelli pre-addestrati.
- Ottimizza i modelli linguistici di grandi dimensioni (LLM) per le attività di NLP.
- Ottimizza le prestazioni del modello e affronta le sfide più comuni.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a sviluppatori di livello intermedio e professionisti dell'intelligenza artificiale che desiderano implementare strategie di messa a punto per modelli di grandi dimensioni senza la necessità di ampie risorse computazionali.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere i principi dell'adattamento di basso rango (LoRA).
- Implementa LoRA per una messa a punto efficiente di modelli di grandi dimensioni.
- Ottimizza l'ottimizzazione per ambienti con risorse limitate.
- Valuta e distribuisci modelli ottimizzati per LoRA per applicazioni pratiche.
Fine-Tuning Multimodal Models
28 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello avanzato che desiderano padroneggiare la messa a punto di modelli multimodali per soluzioni di intelligenza artificiale innovative.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi l'architettura dei modelli multimodali come CLIP e Flamingo.
- Prepara e pre-elabora in modo efficace i set di dati multimodali.
- Ottimizza i modelli multimodali per attività specifiche.
- Ottimizza i modelli per le applicazioni e le prestazioni del mondo reale.
Fine-Tuning for Natural Language Processing (NLP)
21 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello intermedio che desiderano migliorare i loro progetti di PNL attraverso l'efficace messa a punto di modelli linguistici pre-addestrati.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi i fondamenti della messa a punto per le attività di NLP.
- Ottimizza i modelli pre-addestrati come GPT, BERT e T5 per applicazioni NLP specifiche.
- Ottimizza gli iperparametri per migliorare le prestazioni del modello.
- Valuta e distribuisci modelli ottimizzati in scenari reali.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 oreQuesto corso di formazione dal vivo e guidato da un istruttore in Italia (online o in loco) è rivolto a ricercatori AI di livello avanzato, ingegneri di machine learning e sviluppatori che desiderano ottimizzare DeepSeek modelli LLM per creare applicazioni AI specializzate su misura per industrie, domini o esigenze aziendali specifiche.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere l'architettura e le capacità dei modelli DeepSeek, inclusi DeepSeek-R1 e DeepSeek-V3.
- Preparare set di dati e preprocessare i dati per l'ottimizzazione.
- Affinare DeepSeek LLM per applicazioni specifiche del settore.
- Ottimizzare e distribuire modelli ottimizzati in modo efficiente.
Fine-Tuning Large Language Models Using QLoRA
14 oreQuesto corso guidato dal formatore in Italia (online o presenza) è rivolto a ingegneri di apprendimento automatico, sviluppatori AI e scienziati dei dati di livello intermedio-avanzato che desiderano imparare come utilizzare QLoRA per addestrare in modo efficiente modelli grandi su specifiche attività e personalizzazioni.
Al termine del corso, i partecipanti saranno in grado di:
- Comprendere la teoria dietro QLoRA e le tecniche di quantizzazione per LLM (Large Language Models).
- Mettere in pratica QLoRA nell'addestramento di modelli linguistici grandi per applicazioni specifiche del settore.
- Ottimizzare le prestazioni dell'addestramento su risorse computazionali limitate utilizzando la quantizzazione.
- Deployare e valutare modelli addestrati in applicazioni reali in modo efficiente.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 oreQuesto corso guidato dall'insegnante in Italia (online o sul posto) è rivolto a ingegneri di apprendimento automatico avanzati e ricercatori di IA che desiderano applicare RLHF per affinare modelli AI grandi per una prestazione, sicurezza e allineamento superiori.
Al termine di questo corso, i partecipanti saranno in grado di:
- Comprendere le basi teoriche dell'RLHF e perché è essenziale nello sviluppo moderno dell'IA.
- Mettere in pratica modelli di reward basati sul feedback umano per guidare i processi di apprendimento per rinforzo.
- Perfezionare grandi modelli linguistici utilizzando tecniche RLHF per allineare le uscite con le preferenze umane.
- Applicare le migliori pratiche per la scalabilità dei flussi di lavoro RLHF per sistemi AI di grado produttivo.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello avanzato che desiderano padroneggiare le tecniche per l'ottimizzazione di modelli di grandi dimensioni per una messa a punto conveniente in scenari del mondo reale.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi le sfide della messa a punto di modelli di grandi dimensioni.
- Applicare tecniche di training distribuite a modelli di grandi dimensioni.
- Sfrutta la quantizzazione e l'eliminazione dei modelli per l'efficienza.
- Ottimizza l'utilizzo dell'hardware per le attività di messa a punto.
- Distribuisci modelli ottimizzati in modo efficace negli ambienti di produzione.
Prompt Engineering and Few-Shot Fine-Tuning
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello intermedio che desiderano sfruttare la potenza dell'ingegneria rapida e dell'apprendimento a pochi colpi per ottimizzare le prestazioni LLM per le applicazioni del mondo reale.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendi i principi dell'ingegneria rapida e dell'apprendimento a pochi colpi.
- Progetta prompt efficaci per varie attività di NLP.
- Sfrutta le tecniche a pochi colpi per adattare gli LLM con dati minimi.
- Ottimizza le prestazioni LLM per applicazioni pratiche.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 oreQuesto corso guidato dal formatore in Italia (online o presenza) è rivolto a data scientist e ingegneri AI di livello intermedio che desiderano ottimizzare il fine-tuning dei modelli linguistici grandi in modo più economico ed efficiente utilizzando metodi come LoRA, Adapter Tuning e Prefix Tuning.
Al termine del corso, i partecipanti saranno in grado di:
- Comprendere la teoria sottostante gli approcci al fine-tuning con parametri efficienti.
- Implementare LoRA, Adapter Tuning e Prefix Tuning utilizzando Hugging Face PEFT.
- Confrontare le prestazioni e i compromessi di costo dei metodi PEFT rispetto al fine-tuning completo.
- Distribuire ed scalare modelli LLM fine-tunati con requisiti ridotti di calcolo e archiviazione.
Introduction to Transfer Learning
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti dell'apprendimento automatico di livello principiante e intermedio che desiderano comprendere e applicare tecniche di apprendimento di trasferimento per migliorare l'efficienza e le prestazioni nei progetti di intelligenza artificiale.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Comprendere i concetti fondamentali e i vantaggi del transfer learning.
- Esplora i modelli pre-addestrati più diffusi e le relative applicazioni.
- Esegui l'ottimizzazione di modelli pre-addestrati per attività personalizzate.
- Applica il transfer learning per risolvere problemi del mondo reale in PNL e visione artificiale.
Troubleshooting Fine-Tuning Challenges
14 oreQuesto corso di formazione dal vivo con istruttore in Italia (online o in loco) è rivolto a professionisti di livello avanzato che desiderano affinare le proprie competenze nella diagnosi e nella risoluzione di problemi di messa a punto per i modelli di apprendimento automatico.
Al termine di questo corso di formazione, i partecipanti saranno in grado di:
- Diagnostica problemi come l'overfitting, l'underfitting e lo squilibrio dei dati.
- Implementare strategie per migliorare la convergenza dei modelli.
- Ottimizza l'ottimizzazione delle pipeline per ottenere prestazioni migliori.
- Esegui il debug dei processi di formazione utilizzando strumenti e tecniche pratiche.