Struttura del corso
Introduzione all'applicazione Machine Learning
- Apprendimento statistico vs. apprendimento automatico
- Iterazione e valutazione
- Compromesso distorsione-varianza
Apprendimento automatico con Python
- Scelta delle biblioteche
- Strumenti aggiuntivi
Regressione
- Regressione lineare
- Generalizzazioni e non linearità
- Esercizi
Classificazione
- Aggiornamento bayesiano
- Ingenuo Bayes
- Regressione logistica
- K-Vicini più prossimi
- Esercizi
Convalida incrociata e ricampionamento
- Approcci di convalida incrociata
- Bootstrap
- Esercizi
Apprendimento non supervisionato
- Clustering K-means
- Esempi
- Le sfide dell'apprendimento non supervisionato e oltre i mezzi K
Requisiti
Conoscenza del linguaggio di programmazione Python. E' consigliata una conoscenza di base della statistica e dell'algebra lineare.
Recensioni (5)
The trainer showed that he has a good understanding of the subject.
Marino - EQUS - The University of Queensland
Corso - Machine Learning with Python – 2 Days
It was a great intro to ML!! I liked the whole thing, really. The organization was perfect. The right amount of time for lectures/ demos and just us playing around. Lots of topics were touched, just at the right level. He was also very good at keeping us super engaged, even without any camera being on.
Zsolt - EQUS - The University of Queensland
Corso - Machine Learning with Python – 2 Days
Clarity of explanation and knowledgeable response to questions.
Harish - EQUS - The University of Queensland
Corso - Machine Learning with Python – 2 Days
The knowledge of the trainer was very high and the material was well prepared and organised.
Otilia - TCMT
Corso - Machine Learning with Python – 2 Days
I thought the trainer was very knowledgeable and answered questions with confidence to clarify understanding.