Apache Spark Training Courses

Apache Spark Training Courses

I corsi di formazione Apache Spark in diretta locale e istruiti dimostrano attraverso le esercitazioni pratiche come Spark si inserisce nell´ecosistema dei Big Data e come utilizzare Spark per l´analisi dei dati. La formazione di Apache Spark è disponibile come formazione dal vivo in loco o formazione dal vivo a distanza. La formazione on-site in loco può essere svolta localmente presso la sede del cliente a Italia o nei centri di formazione aziendale NobleProg a Italia. La formazione in remoto dal vivo viene effettuata tramite un desktop remoto interattivo. NobleProg, il tuo fornitore di formazione locale.

Recensioni

★★★★★
★★★★★

Sottocategorie Spark

Schema generale del corso Apache Spark

Nome del corso
Durata
Overview
Nome del corso
Durata
Overview
21 hours
Overview
OBJECTIVE:

This course will introduce Apache Spark. The students will learn how Spark fits into the Big Data ecosystem, and how to use Spark for data analysis. The course covers Spark shell for interactive data analysis, Spark internals, Spark APIs, Spark SQL, Spark streaming, and machine learning and graphX.

AUDIENCE :

Developers / Data Analysts
21 hours
Overview
Hortonworks Data Platform (HDP) è una piattaforma di supporto open source Apache Hadoop che fornisce una base stabile per lo sviluppo di soluzioni per big data sull'ecosistema Apache Hadoop .

Questa formazione dal vivo con istruttore (in loco o remoto) introduce la Hortonworks Data Platform (HDP) e guida i partecipanti attraverso l'implementazione della soluzione Spark + Hadoop .

Al termine di questa formazione, i partecipanti saranno in grado di:

- Utilizzare Hortonworks per eseguire in modo affidabile Hadoop su larga scala.
- Unifica le funzionalità di sicurezza, governance e operazioni di Hadoop con i flussi di lavoro analitici agili di Spark.
- Utilizzare Hortonworks per indagare, convalidare, certificare e supportare ciascuno dei componenti in un progetto Spark.
- Elaborazione di diversi tipi di dati, inclusi strutturati, non strutturati, in movimento e a riposo.

Formato del corso

- Conferenza e discussione interattiva.
- Molti esercizi e pratiche.
- Implementazione pratica in un ambiente live-lab.

Opzioni di personalizzazione del corso

- Per richiedere una formazione personalizzata per questo corso, ti preghiamo di contattarci per organizzare.
14 hours
Overview
Magellan è un motore di esecuzione distribuito open source per analisi geospaziali su big data. Implementato su Apache Spark , estende Spark SQL e fornisce un'astrazione relazionale per l'analisi geospaziale.

Questa formazione dal vivo con istruttore introduce i concetti e gli approcci per l'implementazione dell'analisi geospaziale e guida i partecipanti attraverso la creazione di un'applicazione di analisi predittiva utilizzando Magellan su Spark.

Al termine di questa formazione, i partecipanti saranno in grado di:

- Eseguire query, analisi e unire in modo efficiente set di dati geospaziali su vasta scala
- Implementare i dati geospaziali nelle applicazioni di business intelligence e di analisi predittiva
- Utilizzare il contesto spaziale per estendere le capacità di dispositivi mobili, sensori, log e dispositivi indossabili

Formato del corso

- Conferenza e discussione interattiva.
- Molti esercizi e pratiche.
- Implementazione pratica in un ambiente live-lab.

Opzioni di personalizzazione del corso

- Per richiedere una formazione personalizzata per questo corso, ti preghiamo di contattarci per organizzare.
7 hours
Overview
Alluxio è un sistema di archiviazione distribuito virtuale open source che unifica diversi sistemi di archiviazione e consente alle applicazioni di interagire con i dati alla velocità della memoria. È utilizzato da aziende come Intel, Baidu e Alibaba.

In questo corso di formazione dal vivo con istruttore, i partecipanti impareranno come utilizzare Alluxio per collegare diversi framework di calcolo con sistemi di archiviazione e gestire in modo efficiente dati su scala multi-petabyte mentre passano attraverso la creazione di un'applicazione con Alluxio .

Al termine di questa formazione, i partecipanti saranno in grado di:

- Sviluppa un'applicazione con Alluxio
- Connetti sistemi e applicazioni per big data preservando uno spazio dei nomi
- Estrai in modo efficiente il valore dai big data in qualsiasi formato di archiviazione
- Migliora le prestazioni del carico di lavoro
- Distribuire e gestire Alluxio autonomo o in cluster

Pubblico

- Data scientist
- Sviluppatore
- Amministratore di sistema

Formato del corso

- Parte lezione, parte discussione, esercitazioni e esercitazioni pratiche
7 hours
Overview
Spark SQL is Apache Spark's module for working with structured and unstructured data. Spark SQL provides information about the structure of the data as well as the computation being performed. This information can be used to perform optimizations. Two common uses for Spark SQL are:
- to execute SQL queries.
- to read data from an existing Hive installation.

In this instructor-led, live training (onsite or remote), participants will learn how to analyze various types of data sets using Spark SQL.

By the end of this training, participants will be able to:

- Install and configure Spark SQL.
- Perform data analysis using Spark SQL.
- Query data sets in different formats.
- Visualize data and query results.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hours
Overview
In this instructor-led, live training in Italia (onsite or remote), participants will learn how to set up and integrate different Stream Processing frameworks with existing big data storage systems and related software applications and microservices.

By the end of this training, participants will be able to:

- Install and configure different Stream Processing frameworks, such as Spark Streaming and Kafka Streaming.
- Understand and select the most appropriate framework for the job.
- Process of data continuously, concurrently, and in a record-by-record fashion.
- Integrate Stream Processing solutions with existing databases, data warehouses, data lakes, etc.
- Integrate the most appropriate stream processing library with enterprise applications and microservices.
21 hours
Overview
Big data analytics involves the process of examining large amounts of varied data sets in order to uncover correlations, hidden patterns, and other useful insights.

The health industry has massive amounts of complex heterogeneous medical and clinical data. Applying big data analytics on health data presents huge potential in deriving insights for improving delivery of healthcare. However, the enormity of these datasets poses great challenges in analyses and practical applications to a clinical environment.

In this instructor-led, live training (remote), participants will learn how to perform big data analytics in health as they step through a series of hands-on live-lab exercises.

By the end of this training, participants will be able to:

- Install and configure big data analytics tools such as Hadoop MapReduce and Spark
- Understand the characteristics of medical data
- Apply big data techniques to deal with medical data
- Study big data systems and algorithms in the context of health applications

Audience

- Developers
- Data Scientists

Format of the Course

- Part lecture, part discussion, exercises and heavy hands-on practice.

Note

- To request a customized training for this course, please contact us to arrange.
21 hours
Overview
Apache Spark's learning curve is slowly increasing at the begining, it needs a lot of effort to get the first return. This course aims to jump through the first tough part. After taking this course the participants will understand the basics of Apache Spark , they will clearly differentiate RDD from DataFrame, they will learn Python and Scala API, they will understand executors and tasks, etc. Also following the best practices, this course strongly focuses on cloud deployment, Databricks and AWS. The students will also understand the differences between AWS EMR and AWS Glue, one of the lastest Spark service of AWS.

AUDIENCE:

Data Engineer, DevOps, Data Scientist
21 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at software engineers who wish to stream big data with Spark Streaming and Scala.

By the end of this training, participants will be able to:

- Create Spark applications with the Scala programming language.
- Use Spark Streaming to process continuous streams of data.
- Process streams of real-time data with Spark Streaming.
14 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at data scientists who wish to use the SMACK stack to build data processing platforms for big data solutions.

By the end of this training, participants will be able to:

- Implement a data pipeline architecture for processing big data.
- Develop a cluster infrastructure with Apache Mesos and Docker.
- Analyze data with Spark and Scala.
- Manage unstructured data with Apache Cassandra.
21 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at engineers who wish to set up and deploy Apache Spark system for processing very large amounts of data.

By the end of this training, participants will be able to:

- Install and configure Apache Spark.
- Quickly process and analyze very large data sets.
- Understand the difference between Apache Spark and Hadoop MapReduce and when to use which.
- Integrate Apache Spark with other machine learning tools.
21 hours
Overview
This instructor-led, live training in Italia (online or onsite) is aimed at developers who wish to carry out big data analysis using Apache Spark in their .NET applications.

By the end of this training, participants will be able to:

- Install and configure Apache Spark.
- Understand how .NET implements Spark APIs so that they can be accessed from a .NET application.
- Develop data processing applications using C# or F#, capable of handling data sets whose size is measured in terabytes and pedabytes.
- Develop machine learning features for a .NET application using Apache Spark capabilities.
- Carry out exploratory analysis using SQL queries on big data sets.
35 hours
Overview
MLlib is Spark’s machine learning (ML) library. Its goal is to make practical machine learning scalable and easy. It consists of common learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction, as well as lower-level optimization primitives and higher-level pipeline APIs.

It divides into two packages:

-

spark.mllib contains the original API built on top of RDDs.

-

spark.ml provides higher-level API built on top of DataFrames for constructing ML pipelines.

Audience

This course is directed at engineers and developers seeking to utilize a built in Machine Library for Apache Spark
21 hours
Overview
This course is aimed at developers and data scientists who wish to understand and implement AI within their applications. Special focus is given to Data Analysis, Distributed AI and NLP.
28 hours
Overview
In this instructor-led, live training in Italia, participants will learn about the technology offerings and implementation approaches for processing graph data. The aim is to identify real-world objects, their characteristics and relationships, then model these relationships and process them as data using a Graph Computing (also known as Graph Analytics) approach. We start with a broad overview and narrow in on specific tools as we step through a series of case studies, hands-on exercises and live deployments.

By the end of this training, participants will be able to:

- Understand how graph data is persisted and traversed.
- Select the best framework for a given task (from graph databases to batch processing frameworks.)
- Implement Hadoop, Spark, GraphX and Pregel to carry out graph computing across many machines in parallel.
- View real-world big data problems in terms of graphs, processes and traversals.
21 hours
Overview
In this instructor-led, live training in Italia, participants will learn how to use Python and Spark together to analyze big data as they work on hands-on exercises.

By the end of this training, participants will be able to:

- Learn how to use Spark with Python to analyze Big Data.
- Work on exercises that mimic real world cases.
- Use different tools and techniques for big data analysis using PySpark.

Prossimi corsi Apache Spark

Fine settimana Apache Spark corsi, Sera Spark training, Spark centro di addestramento, Spark con istruttore, Fine settimana Spark training, Sera Spark corsi, Apache Spark coaching, Spark istruttore, Apache Spark trainer, Spark corsi di formazione, Spark classi, Apache Spark in loco, Spark corsi privati, Apache Spark training individuale

Corsi scontati

Newsletter per ricevere sconti sui corsi

Rispettiamo la privacy di ogni indirizzo mail. Non diffonderemo,né venderemo assolutamente nessun indirizzo mail a terzi. Inserire prego il proprio indirizzo mail. E' possibile sempre cambiare le impostazioni o cancellarsi completamente.

I nostri clienti

is growing fast!

We are looking for a good mixture of IT and soft skills in Italy!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions